
Summary To facilitate future carbon and nutrient invento-
ries, we used mixed-effect linear models to develop new ge-
neric biomass functions for Norway spruce (Picea abies (L.)
Karst.) in Central Europe. We present both the functions and
their respective variance–covariance matrices and illustrate
their application for biomass prediction and uncertainty esti-
mation for Norway spruce trees ranging widely in size, age,
competitive status and site. We collected biomass data for
688 trees sampled in 102 stands by 19 authors. The total num-
ber of trees in the “base” model data sets containing the predic-
tor variables diameter at breast height (D), height (H), age (A),
site index (SI) and site elevation (HSL) varied according to
compartment (roots: n = 114, stem: n = 235, dry branches: n =
207, live branches: n = 429 and needles: n = 551). “Core” data
sets with about 40% fewer trees could be extracted containing
the additional predictor variables crown length and social
class. A set of 43 candidate models representing combinations
of lnD, lnH, lnA, SI and HSL, including second-order polyno-
mials and interactions, was established. The categorical vari-
able “author” subsuming mainly methodological differences
was included as a random effect in a mixed linear model. The
Akaike Information Criterion was used for model selection.
The best models for stem, root and branch biomass contained
only combinations of D, H and A as predictors. More complex
models that included site-related variables resulted for needle
biomass. Adding crown length as a predictor for needles,
branches and roots reduced both the bias and the confidence in-
terval of predictions substantially. Applying the best models to
a test data set of 17 stands ranging in age from 16 to 172 years
produced realistic allocation patterns at the tree and stand
levels. The 95% confidence intervals (% of mean prediction)
were highest for crown compartments (~ ± 12%) and lowest for
stem biomass (~ ± 5%), and within each compartment, they
were highest for the youngest and oldest stands, respectively.

Keywords: allocation, allometry, competition, expansion fac-
tor, mixed-effect models, model selection, Picea abies, uncer-
tainty.

Introduction

Historically, studies on whole-tree biomass in Europe were
motivated by interest in (1) assessing forest resources other
than stem wood (Grundner and Schwappach 1952, Fiedler
1987, Marklund 1987, Hakkila 1989) and (2) understanding
how stem increment is determined by the mass and surface
area of the assimilatory apparatus (e.g., Schmidt 1949, Burger
1953, Schöpfer 1961). Since the mid-1960s, the reasons for
tree biomass studies have become more diverse. With the rise
of ecosystem research, which was catalyzed by the Interna-
tional Biological Program, detailed allometric studies of tree
crowns and root systems were needed to scale up branch-level
gas exchange (Droste zu Hülshoff 1969, Schulze et al. 1977),
quantify nutrient and energy flow associated with growth and
mortality of tree organs (Duvigneaud and Denaeyer-De Smet
1970, Heller and Göttsche 1986), and parameterize allocation
rules in forest growth models (Running and Gower 1991).

Recently, the need for information on whole-tree biomass
allocation patterns has increased with the advent of the Kyoto
Protocol under the United Nations Framework Convention on
Climate Change (UNFCCC). Articles 3.3 and 3.4 of the proto-
col require measurement of carbon exchange as part of the
greenhouse gas accounting by nations claiming biospheric
sinks to meet their commitments to reduce CO2 emissions
(Wissenschaftlicher Beirat der Bundesregierung Globale
Umweltveränderungen (WBGU) 1998, Intergovernmental
Panel on Climate Change (IPCC) 2000). One way of quantify-
ing carbon exchange in forests is to follow the change in car-
bon stocks over time. Tree biomass, an important component
of a forest’s carbon pool, may be estimated using stem volume
provided by national forest inventories as input (Burschel et al.
1993, Brown 2002) or by linking biomass functions directly to
tree-level data of forest inventories (Hall et al. 2001). In the
first case, stem volume is converted to whole-tree biomass
based on biomass expansion factors that are calculated as the
stand-level ratio of whole-tree biomass to stem volume. Al-
though the denominator of this ratio may be provided by stan-
dard inventories, the numerator must be estimated by biomass
functions. Thus, in both calculations, generic biomass func-
tions are a prerequisite for carbon inventories in forests.
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Biomass allocation patterns can be measured only at the tree
level. In a subsequent step, biomass functions are established
to scale up tree-level biomass to the whole stand (Satoo 1970).
These functions relate the biomass of sample trees to dimen-
sions that are easy to measure for a large number of trees such
as diameter at breast height (D), tree height (H) and crown
length (C). There are comprehensive collections of stand-spe-
cific biomass functions (e.g., Ter-Mikaelian and Korzukhin
1997). However, such stand-specific functions cannot be used
for scaling-up biomass to the regional level where several age
classes and structural types of stands coexist. For example, if
the regression method is used, as in most studies, sample trees
are selected to represent the whole range of the diameter distri-
bution of a stand to avoid extrapolation errors. In Norway
spruce, almost all biomass studies were conducted in even-
aged stands, and hence any difference in size was related to the
competitive status rather than the age of a tree. However, a sup-
pressed tree in an older stand having the same approximate
size as a dominant tree in a younger stand exhibits signifi-
cantly different allocation patterns. In this situation, progress
is possible only by pooling data from many stand-level studies
and by using a larger set of predictors that, if combined, may
discriminate between a range of growth situations. This versa-
tility and comprehensiveness may make the resulting models
suitable also for quantification of biomass in highly structured
multi-species stands and for providing constraints for pro-
cess-based stand growth models (Mäkelä et al. 2000).

In Central Europe, Norway spruce (Picea abies (L.) Karst.)
covers about 35% of the forested area (Körner et al. 1993,
Polley 1994). Based on a meta-data set comprising biomass
data of 688 trees harvested in 102 stands in five Central Euro-
pean countries by 19 research groups, we developed new ge-
neric allometric models. A comparable database of tree-level
biomass for Norway spruce exists only for Scandinavia and
has been analyzed by Marklund (1987). For the biomass com-
partments needles, branches, dry branches, stem and roots, we
developed allometric functions using mixed-effect models as a
meta-analysis tool. We outline how these functions can be ap-
plied to calculate confidence intervals for individual tree pre-
dictions as well as for stand-level estimates.

Methods

Constructing the database

The database comprises both a stand-level table containing in-
formation on location, climate, substrate and biometric stand
characteristics and a tree-level table containing data on bio-
mass compartments and various tree-level predictors. Cur-
rently, the database holds entries for 688 trees, originating
from 102 stands located in five Central European countries
(Belgium, Denmark, Germany, Czech Republic and Switzer-
land), which were analyzed for total or compartment biomass
by 19 authors (Figure 1, Table 1). We considered only studies
that provided the following minimum set of five predictors:
three basic variables, diameter at breast height (D; cm), height
(H; m) and age (A; years); and two site variables, site index

(SI; mean height of trees at 100 years in m) and height above
sea level (HSL; m). For each of the five compartments, smaller
subsets could be extracted that, in addition to the basic and site
variables, contained two variables that represented competi-
tion, namely crown length (C; m) and the position of the crown
in relation to the main canopy or social status (SOC; categori-
cal, see Burschel and Huss 1997). We call the large data sets
“base” data sets and the smaller but more comprehensive data
sets “core” data sets.

Climate data were not available for all sites, but elevation
(HSL) was used as a proxy for climate, because it represents a
dominant factor differentiating the temperature and precipita-
tion regime in Central Europe. For the subset of sites with
available climate data (n = 48), HSL was correlated positively
with annual precipitation (r = 0.85) and negatively with mean
annual temperature (r = –0.81). Further, only trees from sites
less than 1400 m a.s.l. were included. In some cases, the social
status of a sample tree was inferred by comparing its dimen-
sions with the height and diameter distribution of the sample
stands. If not specified, SI was reconstructed from stand age
and mean stand height based on the yield table for Norway
spruce (M-System) published by Wenk et al. (1985).

The studies differed with respect to the set of biomass com-
partments considered, the methods of destructive sampling
and the strategy of tree selection. However, they all met the
following criteria: (a) the mass of needles and woody compart-
ments (excluding stem wood) or subsamples of these were
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Figure 1. Map of Central Europe showing locations of study sites (�).
Figures next to sites or site clusters indicate how many stands per
study site were investigated. Locations of some forest faculties are
shown as crosses (×) to illustrate the clumped distribution of study
sites around research facilities. The exact locations of the Danish
stands were not reported.
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directly measured (not the volume, cf. Grundner and Schwap-
pach 1952); (b) needles and shoots were analyzed separately;
and (c) stem mass was either directly measured or its volume
was converted to mass based on wood density measurements
on the same tree. Because the definition of size classes of roots
and branches varied among studies, we had to subsume the
various biomass compartments reported in the literature in one
of five categories: (1) roots including the stump, (2) stem, (3)
dry branches, (4) branches and (5) needles. All woody compo-
nents include bark, because in many publications, bark bio-
mass was not reported separately. Although the definitions are
clear-cut for the aboveground categories, this is not the case
for belowground biomass. In natural stands, fine roots are dif-
ficult to assign to individual trees. This is especially true for
large trees where the root systems cannot be excavated as a
whole, but have to be extracted in pieces with a cable winch.
Also, among studies, definitions varied greatly and the lower
diameter threshold was not always reported (see Table 1). Be-
fore model selection, data within the five groups were care-
fully compared according to authors and checked for outliers
by graphical analysis. A file listing all sites with location
names, geographical coordinates, climatic and edaphic data
can be downloaded from ftp://panorama.bgc-jena.mpg.de/
pub/science/cwirth/Wirth_ et_al_spruce_sites.doc.

Based on 17 fully inventoried stands ranging in age from 16
to 173 years, we compiled a test data set comprising 1985 trees
with known diameter, height and age. In one of these, a
60-year-old stand called Wetzstein, crown length was also
measured. This data set was used (1) to explore the ability of
the functions to produce realistic allocation patterns, (2) to
quantify the uncertainty of the predictions at the tree and stand
levels, and (3) for comparison with Marklund’s biomass func-
tions for Sweden (Marklund 1987, 1988).

Rationale of model building

Candidate models First, we established a candidate set of 43
models based on the minimum set of the five continuous pre-
dictors, i.e., the three basic variables D, H and A and the two site
variables SI and HSL. The models differed in complexity,
ranging from simple allometric models to more general model
formulations with site-specific predictors, second-order poly-
nomial terms or interaction terms added. We did not apply
data-mining techniques such as automated procedures of best
subset selection, but restricted the choice to models that had
been successfully applied in the past or represented biologi-
cally meaningful extensions of such models. The tree-level
predictors (D, H, A) were transformed using the natural loga-
rithm, whereas the stand-level predictors SI and HSL were
left untransformed. The transformations were performed to
achieve linearization of the underlying allometric relationships
and to ensure homogeneity of residual error variances. Sec-
ond-order polynomial terms were considered for lnD and lnH,
but only in connection with the first-order terms. Because D is
the variable with the highest predictive power in allometric
models, lnD was contained in all tested models.

Incorporation of data sets produced by different authors into
one comprehensive analysis introduces some heterogeneity
that particularly affects the assessment of the accuracy of the
resulting predictions (Crawley 2002). Estimates of the uncer-
tainty of predicted values rely heavily on the assumption of in-
dependence of residuals from the fitted model, an assumption
hardly met if data from different authors are combined. Rather,
different measurement methodologies or peculiarities of the
investigated stands presumably cause consistent deviation of
observed data values of the same author from the fitted model.

One way to address this type of data heterogeneity ade-
quately is the use of mixed models (Pinheiro and Bates 2000).
Instead of assuming one global linear model:

y x xi i p pi i= + + + +b b b0 1 1 ... ε (1)

with p + 1 unknown, but fixed, regression coefficients b l (l = 0,
…, p) and p predictors xli (with l = 1, …, p and i = 1, …, n
trees), we additionally allow for slight random fluctuations in
the regression coefficients from author to author as:

y b b x b x

j

ij j j ij p pj pij ij= + + + + + + +

=

( ) ( ) ... ( )b b b0 0 1 1 1

1

ε

, ... , ,

, ... , ,

J

i n n nj j
j

J

= =
=

∑1
1

where the additional index j indicates the different authors and
blj is the random deviation from the mean regression coeffi-
cient bl due to author j. Separating fixed and random parts of
the model gives:

y x x b x b xij ij p pij j j ij pj pj= + + + + + + +b b b b0 1 1 0 1 1... ... + ε ij

or in vector notation:

yij = xijß + xijbj εij

with xij = (1, x1ij, …, xpij). If random fluctuations are incorpo-
rated only for a subset of predictor variables (because, e.g., for
some predictors the differences are considered negligible), this
subset is subsumed in a vector zij, resulting in the linear mixed
model (LMM, Pinheiro and Bates 2000)

yij = xijß + zijbj + εij j = 1, ..., J, (2)
i = 1, ..., nj

where ß is the ( p + 1)-dimensional vector of fixed effects and
bj the q-dimensional (q < p + 1) vector of random effects asso-
ciated with author j. Besides the usual assumptions of inde-
pendence, normality and variance-homogeneity of the resid-
ual errors (εij ~ N (0, σ2)), the random effects are considered to
be independent of the residual error, independent for the dif-
ferent authors, and normally distributed with covariance ma-
trix Ψ (bj ~ N(0, Ψ)). Thus, random effects for the same author
are not assumed to be independent. This is a reasonable ap-
proach, because even in the case of a simple linear regression,
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a slight change in the slope will affect the corresponding inter-
cept. It is important to note that the LMM is not equivalent to
separate linear fits for each author. When fitting an LMM, the
individual estimates for each author (blj + blj) tend to be pulled
toward the fixed-effect estimates blj compared with estimated
coefficients from separate regressions (Pinheiro and Bates
2000). The diagonal elements of Ψ are the variances of the
random effects, thus describing the degree of variability of the
respective regression coefficient from author to author. The
off-diagonal elements are covariances between different ran-
dom effects. A large number of random effects implies a large
number of variance-covariance parameters, thus increasing
model complexity. Preliminary inspection of our candidate
models revealed that random effects in higher-order terms and
interaction terms were negligible. We therefore decided to in-
clude random effects only for the intercept and first-order
terms (lnD, lnH, lnA). Each of the 43 models was fitted sepa-
rately for each biomass compartment using the maximum-
likelihood method as implemented in the lme-procedure in
S-PLUS 6.0 (Insightful, Hampshire, U.K.).

Model selection Selecting a model is always a compromise
between (1) including as many predictors as possible to reduce
bias in the predictions and (2) keeping the set of predictors as
small as possible to reduce the variability of predictions. The
ultimate validation of a fitted model is the comparison of pre-
dicted values with new data. This ideal is seldom achieved, be-
cause the difficulty in obtaining data is often the reason for
searching for a prediction model. Cross-validation techniques,
where the available data set is split into a training data set for
model fitting and an assessment data set for evaluating the pre-
dictive power of the fitted model, offer an alternative approach.
The random data split is repeated thousands of times, resulting
in estimates of mean prediction error for all the candidate mod-
els. In view of the large number of candidate models, we de-
cided to use a less computer-intensive criterion, the Akaike
Information Criterion (AIC). We opted for AIC because it ex-
plicitly addresses a highly relevant question in our prediction
problem: it estimates the expected information loss when the
unknown truth is approximated by a prediction model
(Burnham and Anderson 1998). The value of AIC can easily be
calculated from the results of model fitting, because AIC =
–2 log-likelihood + 2P, where P is the number of parameters in
the fitted model (including σ2 and the elements of the vari-
ance-covariance matrix ). The best model is the one with the
smallest value of AIC. This definition clearly supports the in-
terpretation of AIC as a trade-off between model fit and com-
plexity. We note that model comparison using AIC is possible
only if the model fits are based on exactly the same data set and
the parameters are estimated with the maximum-likelihood
method.

Best models We report best models (“best”) at three levels of
complexity. (1) The best candidate of models containing only
combinations of the basic variables lnD, ln H and lnA (termed
DHA models). (2) The best candidate of models containing
combinations of the basic variables and site variables SI and

HSL (termed DHAS models). (3) The best candidate DHA and
DHAS models with the competition variable crown length C
(as lnC) added (termed DHA+C or DHAS+C model). (The ef-
fect of SOC was also tested by including it as a dummy-coded
categorical variable, distinguishing four groups (dominants,
co-dominants, intermediates and suppressed). However, the
coefficients are not reported. Note that the dummy representa-
tion of SOC in four groups adds three new parameters to the
models.)

For the sake of applicability, we also present simplified
models (“simp”) containing only lnD as a predictor (simp D)
or only first-order terms of the basic variables lnD, lnH and
ln A (simp DHA). The latter form of the models should be used
if extrapolation beyond the range of the predictors in the re-
gression design matrices is necessary.

To illustrate the differences in predictive performance of
different models, we estimated the aggregate prediction error
(APE, Davison and Hinkley 1997) of the best models by
cross-validation. The APE quantifies both precision and bias.
For each cross-validation run, the core data set was randomly
split into a training set containing 90% of the data and a valida-
tion set containing the remaining 10%. The best models were
then fit based on the training data set and used to predict the re-
sponses in the validation set. An estimate of APE was obtained
by averaging the mean quadratic prediction error over 100
cross-validation runs:

APE (
valid

observed predicted
valid

=
=

∑1

100

1

1

100
2

n
y y

i

– )
ation set i
∑

based on ln-transformed y values.

Application of models for prediction and uncertainty
assessment

Our starting point is the prediction of biomass and quantifica-
tion of the prediction error for single compartments of an indi-
vidual tree. To this end, the best model has to be applied to the
set of new predictors, and the result must be back-transformed
to the original scale. Among the different approaches to cope
with the bias induced by nonlinear back-transformation, the
nonparametric smearing estimate (Duan 1983) involves the
fewest assumptions. Unfortunately, this estimate is not di-
rectly applicable to the case of mixed linear models. We there-
fore developed a modified smearing estimate that could be
applied in this slightly more complex situation. The derivation
is presented in Appendix 1.

To assess the precision of the modified smearing estimate,
we start by estimating the variance of newly predicted values
on the ln-transformed scale. According to Model 2 (Equa-
tion 2), this variance is given by:

Var Var –new new new new new new( � – ) ( (� ) )y y = − −x z bß ß ε

= Varnew new newx x z(�ß) T + Ψznew
T + σ 2

which shows partitioning resulting from the different sources
of uncertainty. The first summand on the right-hand side de-
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scribes the variance component due to the estimation of the
fixed effects, the second is caused by uncertainties associated
with the differences between authors, and the third accounts
for the residual error. Estimates of the variance components re-
sulting from maximum likelihood fits are known to underesti-
mate true variances (Crawley 2002). We therefore refitted the
best models using the restricted maximum likelihood method
(REML) to obtain estimates of Var� (�), �ß Ψ and �σ 2. These esti-
mates are available by anonymous ftp from http://panorama.
bgc-jena.mpg.de/pub/science/cwirth. The estimated variance
of a new response is thus given by:

Var Varnew new new new new� ( � ) � (�) � �y T T= + +x x z zß Ψ σ 2 (3)

and an approximate 95% confidence interval for the new re-
sponse is:

� – . � ( � ), � . � ( � )y y y ynew new new newVar Var196 196+ (4)

exploiting asymptotic normality of the prediction �ynew. Back-
transformation to the original scale results in an asymmetric
95% confidence interval for the predicted biomass compart-
ment for one individual tree. Bias correction is unnecessary
because the nonlinear transformation has no effect on the cov-
erage probability of the interval. An example of how to calcu-
late confidence limits is shown in Appendix 2. A similar
approach is necessary to arrive at the 95% confidence interval
for stand-level predictions of biomass. To this end, variance at
the logarithmic scale Var new� ( � )y must be converted to the origi-
nal scale Var new� (exp( � ))y , which can be additively propagated
to the stand level. Consequences of possible overestimation of
the variances (e.g., too conservative confidence intervals) are
less severe than prediction bias, so we used the formula:

Var Var( Var(new new new� (exp( � )) exp( � � � ))(exp( �y y y= +2 � )) )ynew − 1

(Parresol 2001), which relies on normality of residuals on the
logarithmic scale. Assuming independence of predictions for
individual trees, the variance of the stand-level sum of the bio-
mass predictions Var(total)� � is calculated by adding the esti-
mated variances for all K trees of a stand according to:

Var total Var( Varnew
=1

new� ( � ) � exp( � ) ) � (exp( �= =∑ y y
k

K

k
k

K

k
=1

∑ ))

An approximate 95% confidence interval is calculated analo-
gously to Equation 5. Because the variances of the five bio-
mass compartments could not be considered independent, the
calculation of the 95% prediction interval for whole-tree bio-
mass required knowledge of the correlation structure of the er-
rors. This was obtained based on the 78 trees for which
measurements were taken for all biomass compartments. The
error propagation was done by Monte Carlo simulation.

Results

The range of the basic predictors D, H and A and the dependent
variable W varied among compartments (Table 2). The largest
ranges of predictor values were present in the base data sets of
the crown compartments. Here, diameters ranged from 1.8 to
67.6 cm, height from 2.1 to 42.8 m and age from 13 to
157 years. Smaller ranges of predictor values were present in
the data sets of dry branches and stems (D = 3.5–52.8 cm, H =
4.2–33.4 m and A = 13–148 years), although the medians ex-
ceeded those of the crown compartments by 10 to 20%. Low-
est ranges for D and H were present in the root data set (D =
5.1–52.8 cm, H = 5.7–32.4 m), which therefore defines the
limits for whole-tree biomass prediction.

There was considerable spread in the relationships between
basic predictor variables (Figure 2). For example, 100-year-
old trees exhibited diameters ranging from 15 to 60 cm, and
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Table 2. Summary statistics of the basic variables (D, H and A) and the dependent variable (biomass) of the data sets used for the model fitting. Ab-
breviations: n = number of individual trees in the data set; Min = minimum; Max = maximum; Med = median; and Skew = skewness. All woody
compartments include bark.

Compartment Data set1 n Diameter at 1.3 m, D (cm) Height, H (m) Age, A (years) Biomass, W (kg dry mass)

Min Max Med Skew Min Max Med Skew Min Max Med Skew Min Max Med Skew

Needles Base 551 1.8 67.6 17.2 1.16 2.1 42.8 17.2 0.31 13 157 52 1.04 0.38 131.9 9.0 2.3
Core 388 1.8 67.6 17.0 1.18 2.1 42.8 18.1 0.27 14 157 51 1.17 0.50 131.9 8.9 2.3

Branches Base 429 1.8 67.6 17.2 1.12 2.1 42.8 17.9 0.25 13 157 53 1.02 0.30 372.4 11.2 3.7
Core 384 1.8 67.6 17.4 1.14 2.1 42.8 18.4 0.24 15 157 53 1.18 0.35 372.4 11.6 3.6

Dry branches Base 207 3.5 52.8 18.6 0.71 4.2 33.4 19.3 –0.08 13 148 58 0.72 0.05 50.8 5.0 2.5
Core 167 5.1 52.8 19.0 0.82 5.9 33.4 19.5 0.14 15 148 60 0.90 0.72 50.8 5.3 2.4

Stem Base 235 3.5 52.8 21.0 0.63 4.2 33.4 20.7 –0.28 13 148 62 0.35 1.05 1353.8 136.6 2.0
Core 173 5.1 52.8 21.2 0.74 5.7 33.4 20.8 –0.13 15 166 58 1.06 2.69 1353.8 140.2 2.0

1 The base data set comprises all entries that contain at least the minimum set of predictors (i.e., basic variables and site variables), and the smaller
core data set comprises all entries that in addition contain the variables related to competition, crown length and the social status of the trees.
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trees of 20 cm diameter could have reached a height of 12 to
25 m. It is evident that multicollinearity is present; however, as
discussed later, this does not affect the precision and accuracy
of the prediction.

Although all functions are multidimensional, it is instruc-
tive to look at plots of biomass versus diameter (Figure 3).
Variability in the data of the crown compartments was much
higher than in the data of stem and roots. The largest scatter
was observed for dry branch biomass, which varied by almost
an order of magnitude at a given diameter. In general, as tree
size increases, the number of data points becomes less and the
variance increases. This is especially true for needle and
branch biomass. Taking the logarithms of D and W, one ob-
tains a near-linear relationship and reduces the heterogeneity
of variance along the predictor axis (insets in Figure 3). We
note that, in the case of needles and branches, complete homo-
geneity of the variances cannot be achieved if only D is used as
a predictor.

For the branch and root compartments, the highest ranking
models (i.e., those with the lowest value of AIC) contained
only four tree-specific parameters, whereas the best model for
predicting needle biomass was more complex and contained
eight parameters including both tree- and site-specific parame-
ters (Table 3). For all compartments except dry branches, the
simplest allometric model with only diameter as predictor
(“simp D” in Table 3) exhibited much higher values of AIC
and RMSE than the six best candidate models. The range of
AIC values covered by the best-subset models was generally
small except for the needle compartment, where the inclusion
of SI and HSL improved the model substantially. For the
needle, stem and root compartments, D also entered the model
as a quadratic term, indicating that the allometric exponent of
D is not constant over the whole range of ages and sizes in our
regression design matrix. Visual inspection of biomass of
these compartments versus diameter on a log–log scale sug-
gested lower allometric exponents with decreasing D for
needles and higher allometric exponents with decreasing D for
bole and roots (see insets in Figure 3).

The finding that the D coefficient was always positive,
whereas the coefficients for A and H were negative in all ex-
cept two models (Table 4), underscores the role of D as the
most important predictor. When combined with D, the infor-
mation added by H and A is mainly a characterization of the
competitive environment of a tree. For two trees with the same
diameter, the taller and therefore more slender tree favored
height growth in relation to diameter growth and crown devel-
opment. Trees competing for light usually exhibit a poorly de-
veloped crown (Vanninen and Mäkelä 2000, Wirth et al.
2002). The negative sign of the A coefficient if D and H are
also present as predictors can be explained in the following
way. For two trees having the same diameter and height, the
older tree took longer to attain the given stature, which proba-
bly reflects development under competitive pressure or in a
less favorable environment. Predictor H did not enter the
model for roots.

The smaller core data set also contained C as a quantitative
predictor and SOC as a qualitative predictor. Unlike the basic
variables, C directly accounts for crown geometry, whereas
SOC directly accounts for the competitive effect. For the
crown compartments (needles and branches), the best models
having the lowest AIC (numbers with asterisks in Table 5)
were those that included both variables describing competi-
tion. The same was also true for the root compartment, sug-
gesting a functional balance during root and crown develop-
ment. Thus, for these three compartments, the information
contained in the combination of diameter, height and age was
insufficient to capture the effect of competition on allocation
patterns. However, including one or both variables to account
for competition led to a deterioration of the model for the stem,
but had very little effect on the dry branch compartment. The
effect of adding crown length as a predictor was generally
much greater than that of adding social status.

Model evaluation

Cross-validation showed that, irrespective of the compart-
ment, the model containing only D as a predictor (the allo-
metric model) exhibited the largest aggregate prediction errors
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Figure 2. Diameter–age and
height–diameter relationships
for 688 trees in the database.
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(APE) and thus the least predictive power (Table 6). With the
best DHA model, the APE for needles and branches was about
30% lower than for the simple allometric model. Compared
with crown compartments, the overall APE for the stem was
much smaller and the relative improvement (66%) by using
the best DHA model instead of the D model was higher. A fur-
ther decrease in APE was achieved for needles if the best
model containing crown length as a predictor was used. In
contrast to the results presented in Table 5, crown length did
not reduce APE for branches.

In a different approach to model evaluation, we calculated
the 95% prediction intervals for stand-level biomass of
needles, branches and stems in a 60-year-old Norway spruce
stand of 108 trees with a known distribution of diameter,
height and crown length. The prediction intervals were calcu-
lated using different models and different model data sets. Fig-

ure 4 illustrates the superiority of the models including crown
length for predicting needle and branch biomass. Compared
with the full DHA+C model, the simplest model with only the
predictor D (D model) yielded a 50% higher prediction inter-
val for needle and branch biomass, whereas the DHA models
took an intermediate position. In contrast to the results pre-
sented in Tables 3 and 6, the DHAS and DHAS+C models,
which included site-related predictors, had higher prediction
intervals for needle biomass than their tree-level counterparts
DHA and DHA+C. As expected, lower prediction intervals re-
sulted for both needle and branch biomass if models were fit
with the larger base data set (Figure 4 hatched bars).

Analysis of allocation patterns

Of 18 stands with data available for D, H and A for every tree,
we chose the smallest 10% and largest 10% of the population

128 WIRTH, SCHUMACHER AND SCHULZE
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Figure 3. Biomass per tree of
needles, branches, dry
branches, stem and roots
against diameter at breast
height on the original scale.
Note that the size of the data
sets varies among compart-
ments. Insets show log–log
plots.
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to represent suppressed and dominant trees and predicted their
biomass with our best DHA models. As expected, with in-
creasing tree size, the relative share of crown biomass com-
partments decreased, whereas the proportion allocated to stem
and root increased (Figure 5). At a given stem biomass, sup-
pressed trees allocated relatively less biomass to crown com-

partments but more to the root system than dominant trees.
Suppressed trees exhibited a higher proportion of dry
branches, whereas the proportion of biomass allocated to the
stem was unaffected by social status.

To illustrate the performance of our models, we applied the
best DHA models to 17 stands with known distributions of
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Table 3. The six best candidate models for each biomass compartment (DHA and DHAS models not separated). To illustrate the importance of
adding variables other than diameter, statistical indicators of the simplest allometric model (lnW = b0 + b1ln D), termed “simp D,” are listed as well.

Score Compartment Type1 AIC2 RMSE3 Model structure4

1 Needles DHAS 440.6 0.330 lnW = b0 + b1lnD + b2(lnD)2 + b3lnH + b4(lnH)2 + b5lnA + b6SI + b7HSL
2 DHAS 443.7 0.331 lnW = b0 + b1lnD + b2(lnD)2 + b3lnH + b4(lnH)2 + b5lnA + b6SI
3 DHAS 456.2 0.336 lnW = b0 + b1lnD + b2(lnD)2 + b3lnH + b4(lnH)2 + b5lnA + b6HSL
4 DHAS 459.2 0.336 lnW = b0 + b1lnD + b2(lnD)2 + b3lnH + b4lnA + b5SI + b6HSL
5* DHA 462.2 0.338 lnW = b0 + b1lnD + b2(lnD)2 + b3lnH + b4(lnH)2 + b6lnA

6 DHAS 462.7 0.337 lnW = b0 + b1lnD + b2(lnD)2 + b3lnH + b4lnA + b5SI
simp D 663.7 0.420 lnW = b0 + b1lnD

1* Branches DHA 474.9 0.395 lnW = b0 + b1lnD + b2lnH + b3(lnH)2

2 DHAS 474.9 0.395 lnW = b0 + b1lnD + b2lnH + b3(lnH)2 + b4HSL
3 DHAS 475.9 0.395 lnW = b0 + b1lnD + b2lnH + b3(lnH)2 + b4SI + b5HSL
4 DHAS 476.9 0.395 lnW = b0 + b1lnD + b2lnH + b3(lnH)2 + b4SI
5 DHA 476.9 0.395 lnW = b0 + b1lnD + b2(lnD)2 + b3lnH + b4(lnH)2

6 DHAS 476.9 0.394 lnW = b0 + b1lnD + b2(lnD)2 + b3lnH + b4(lnH)2+ b5HSL
simp D 648.1 0.495 lnW = b0 + b1lnD

1 Dry branches DHAS 339.7 0.487 lnW = b0 + b1lnD + b2lnA + b3SΙ + b4HSL
2 DHAS 340.5 0.484 lnW = b0 + b1lnD + b2lnA + b3HSL
3 DHAS 340.8 0.481 lnW = b0 + b1lnD + b2(lnD)2 + b3lnA + b4SI + b5HSL
4 DHAS 342.3 0.482 lnW = b0 + b1lnD + b2(lnD)2 + b3lnA + b4HSL
5 DHAS 342.3 0.473 lnW = b0 + b1lnD + b2lnH + b3lnA + b4HSL
6* DHA 342.4 0.481 lnW = b0 + b1lnD + b2lnH + b3(lnA × lnD)

simp D 350.4 0.500 lnW = b0 + b1lnD

1* Stem DHA –300.6 0.108 lnW = b0 + b1lnD + b2(lnD)2 + b3lnH + b4(lnH)2 + b5lnA

2 DHAS –300.1 0.109 lnW = b0 + b1lnD + b2(lnD)2 + b3lnH + b4(lnH)2 + b5lnA + b6SI
3 DHAS –298.8 0.109 lnW = b0 + b1lnD + b2(lnD)2 + b3lnH + b4(lnH)2 + b5lnA + b6HSL
4 DHAS –298.4 0.110 lnW = b0 + b1lnD + b2lnH + b3lnA + b4SI
5 DHAS –297.1 0.110 lnW = b0 + b1lnD + b2lnH + b3lnA + b4SI + b5HSL
6 DHAS –296.8 0.110 lnW = b0 + b1lnD + b2(lnD)2 + b3lnA + b4SI + b5HSL

simp D –102.7 0.173 lnW = b0 + b1lnD

1* Roots DHA 70.4 0.288 lnW = b0 + b1lnD + b2(lnD)2 + b3lnA

2 DHA 70.6 0.273 lnW = b0 + b1lnD + b2(lnD)2 + b3lnH + b4lnA

3 DHAS 71.2 0.287 lnW = b0 + b1lnD + b2(lnD)2 + b3lnA + b4HSL
4 DHAS 71.5 0.310 lnW = b0 + b1lnD + b2(lnD)2 + b3lnA + b4SI
5 DHAS 71.9 0.285 lnW = b0 + b1lnD + b2(lnD)2 + b3lnA + b4SI + b5HSL
6 DHAS 72.0 0.273 lnW = b0 + b1lnD + b2(lnD)2 + b3lnH + b4lnA + b5SI

simp D 92.3 0.331 lnW = b0 + b1lnD

1 Models containing only combinations of the basic variables D, H and A are termed ‘DHA’ models. Models containing site variables SI and HSL
in addition are called “DHAS” models. The * indicates the best DHA model. The simplest allometric model containing only D as predictor is
termed “simp D.”

2 AIC = Akaike Information Criterion.
3 RMSE = Root mean square error in logarithmic units (for comparison only).
4 Abbreviations: W = dry mass of biomass component; D = diameter at breast height; H = height of tree; A = age of tree; SI = site index; and HSL =

height above sea level.
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age, diameter and height ranging from stand age 16 to
172 years (Table 7). There was a clear age trend of the relative
confidence interval (RCI = half the confidence interval ex-
pressed in percent of the mean prediction). Within a biomass
compartment, young stands with mean D < 10 cm had the

highest RCI. The RCI was lowest in stands of intermediate age
and diameter and increased again in older stands. This trend is
explained by the presence of very small trees (in young stands)
or large trees (in old stands) whose diameters or heights fall
outside the ranges of D and H covered by the trees in the re-
spective regression design matrix (cf. min and max values in
Table 2 and column P in Table 7). In the case of dry branches in
young stands, this phenomenon created extreme variances.
Comparing biomass compartments, the highest median RCIs
were found for dry branch biomass (28%) and the lowest me-
dian RCIs were observed for stem biomass (5%). Branch,
needle and root biomass exhibited intermediate median RCIs
of 12, 13 and 10%, respectively. Combining the uncertainties
of predictions for individual biomass compartments at the
stand level and considering the correlation structure of the
errors, whole-tree biomass at the stand level may be predicted
with an RCI of about 30% in stands younger than 40 years and
only 4% in stands older than 40 years.

The percentage of stand-level biomass allocated to stems
was 45% at a stand age of 16 years and reached a plateau of
about 60% after 60 years. Parallel to this trend, the percentage
of stand-level biomass allocated to roots increased from 10 to
20%. At the same time, the percentage of stand-level biomass
allocated to needles decreased from 18 to 6%, whereas the per-
centage allocated to branches remained remarkably constant at
about 12%. The share of dry branch biomass was only 3% ex-
cept for young (up to 30-year-old) stands (Figure 6).
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Table 5. Exploring the effect of adding variables related to competition, crown length (C) and social status (SOC) to selected best models. The
DHA and DHAS models were recalculated using the smaller core data set containing the variables related to competition. Abbreviations: +C =
lnC (crown length) was added to the model; no SOC classes = the social status was not added as categorical predictor; 4 SOC classes = a categori-
cal variable was added indicating the four crown classes (1 = dominant, 2 = codominant, 3 = intermediate and 4 = suppressed); AIC = Akaike In-
formation Criterion (asterisks indicate the smallest value); and RMSE = root mean square error in logarithmic units (for the purpose of comparison
only). All woody compartments include bark.

Compartment Model type n Score No SOC classes 4 SOC classes

AIC RMSE AIC RMSE

Needles DHA 388 5 349.1 0.3506 336.2 0.3408
DHAS 388 1 334.9 0.3409 331.1 0.3358
DHA+C 388 5 249.4 0.2969 244.7 0.2923
DHAS+C 388 1 243.1 0.2910 240.9* 0.2878

Branches DHA 384 1 420.8 0.3900 422.0 0.3896
DHA+C 384 1 332.3 0.3390 330.0* 0.3369

Dry branches DHA 176 6 289.1 0.4892 287.2 0.4777
DHAS 176 1 280.8 0.5105 278.5* 0.4895
DHA+C 176 6 297.9 0.4885 295.4 0.4763
DHAS+C 176 1 286.1 0.5065 283.8 0.4948

Stem DHA 173 1 –223.6* 0.1037 –222.1 0.1033
DHA+C 173 1 –212.1 0.1038 –210.5 0.1036

Roots DHA 85 1 69.1 0.3095 66.3 0.2925
DHA+C 85 1 65.7 0.2973 58.5* 0.2748

Table 6. Aggregate prediction errors (APE) from 100 cross-validation
runs for models of varying complexity for three exemplary biomass
compartments (needles, branches and stem). For each predictor set
(D, DHA, DHAS, DHA+C), the structure of the best models as pre-
sented in Table 4 was adopted. For each cross-validation run, the data
set was randomly split into a model data set containing 90% of the
data and a validation data set containing the remaining 10%. The APE
were calculated based on the ln-transformed data.

Compartment Model type APE

Needles D 0.3088
DHA 0.1917
DHAS 0.1871
DHA+C 0.1523

Branches D 0.3185
DHA 0.2162
DHA+C 0.2420

Stem D 0.0705
DHA 0.0239
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Discussion

Our meta-analysis provides the first comprehensive system of
functions for predicting whole-tree and compartment biomass
and respective uncertainties of Norway spruce in Central Eu-
rope. Our study is based on data generated over a period of al-
most 100 years by 19 authors of which a substantial part was
either published in doctoral theses, or directly communicated
to the authors (M. Mund, R. Zimmermann, Max-Planck-Insti-
tute for Biogeochemistry, Jena, Germany, personal communi-
cation). Although the incorporation of data reflecting a wide
range of regional variability is essential for the derivation of
generic biomass functions, the heterogeneity of the database
inevitably introduces variance that has to be taken into ac-
count. Differences among data from the various sources may
be partially attributed to different methods used, characteris-
tics of the investigated stands and regional effects. We decided
to subsume all of these different aspects in one categorical
variable “author” because their effects could not be disentan-
gled. The contribution of this variable to the total variability in
the data set is demonstrated by comparing one global linear fit
using the predictors from our best DHA model (ignoring dif-
ferences between authors) and a model with author-specific
coefficients for the most important predictor lnD (F-test:
F17,528 = 4.822, P < 0.001 for the needle compartment). The
better fit of the latter model does not lead to better generic bio-
mass functions, because “author” cannot be used as a predic-
tor. Incorporating “author” as a source of random effects in a
mixed linear model thus provides a way to account for hetero-
geneity in the data set and to obtain realistic estimates of the
uncertainty of predictions derived from our generic biomass
functions.

We note that it is generally desirable to develop additive bio-
mass functions, i.e., that the sum of the separate predictions for

132 WIRTH, SCHUMACHER AND SCHULZE

TREE PHYSIOLOGY VOLUME 24, 2004

Figure 4. Comparison of half 95% prediction intervals for needle,
branch and stem biomass in a 60-year-old Norway spruce stand based
on different model types. In the case of needles and branches, DHA,
DHAS and ‘D simp’ models were fit for both the larger base and the
smaller core data sets (number of trees are given in Table 2) to allow a
comparison based on the same core data set between all model types
including those with crown length added. Figures on the bottom of
each bar indicate the half 95% prediction interval in percent of the
mean prediction.

Figure 5. Predicted allocation
patterns in dominant and sup-
pressed trees at 17 test sites as
a function of their individual
stem biomass. Biomass alloca-
tion percentages and stem bio-
mass are based on mean
dimensions of the 10% largest
trees (dominant trees, �) and
10% smallest trees (suppressed
trees, �) of the test site popu-
lations.

 at V
yzkum

ny ustav lesniho hospodarstvi a m
yslivosti on M

ay 5, 2014
http://treephys.oxfordjournals.org/

D
ow

nloaded from
 

http://treephys.oxfordjournals.org/


TREE PHYSIOLOGY ONLINE at http://heronpublishing.com

BIOMASS FUNCTIONS FOR NORWAY SPRUCE 133

Ta
bl

e
7.

St
an

d-
le

ve
lb

io
m

as
s

pr
ed

ic
tio

ns
±

95
%

co
nf

id
en

ce
in

te
rv

al
s

fo
rt

he
17

st
an

ds
of

th
e

te
st

da
ta

se
t(

kg
dr

y
m

as
s

m
–

2 ).
St

an
d

na
m

es
ar

e
co

m
po

se
d

of
a

re
gi

on
al

in
di

ca
to

ra
nd

th
e

m
ea

n
st

an
d

ag
e

in
ye

ar
s.

A
ll

w
oo

dy
co

m
pa

rt
m

en
ts

in
cl

ud
e

ba
rk

.A
bb

re
vi

at
io

ns
:R

C
I=

re
la

tiv
e

co
nf

id
en

ce
in

te
rv

al
ca

lc
ul

at
ed

as
ha

lf
th

e
co

nf
id

en
ce

in
te

rv
al

as
pe

rc
en

ta
ge

of
th

e
m

ea
n

pr
ed

ic
tio

n;
P

=
pe

rc
en

ta
ge

of
tr

ee
s

in
a

st
an

d
th

at
ar

e
ou

to
ft

he
di

am
et

er
an

d
he

ig
ht

ra
ng

e
of

th
e

m
od

el
da

ta
se

ts
pr

es
en

te
d

in
Ta

bl
e

2;
l=

fa
lli

ng
be

lo
w

th
e

ra
ng

e;
h

=
ex

ce
ed

in
g

th
e

ra
ng

e;
SI

=
si

te
in

de
x

(m
);

an
d

Σ
=

to
ta

lb
io

m
as

s
co

m
pr

is
in

g
al

lc
om

pa
rt

m
en

ts
.T

he
hi

gh
er

th
e

va
lu

e
of

P,
th

e
m

or
e

ex
tr

ap
ol

at
io

n
er

ro
rs

oc
cu

r.

St
an

d
St

an
di

ng
SI

M
ea

n
D

M
ea

n
H

N
ee

dl
es

B
ra

nc
he

s
D

ry
br

an
ch

es
St

em
R

oo
ts

Σ2

vo
lu

m
e

(m
)

(c
m

)
(m

)
(k

g
m

–
2 )

R
C

I
P

(k
g

m
–

2 )
R

C
I

P
(k

g
m

–
2 )

R
C

I
P

(k
g

m
–

2 )
R

C
I

P
(k

g
m

–
2 )

R
C

I
P

(k
g

m
–

2 )
R

C
l

(m
3

ha
–

1 )

F-
16

83
40

6.
3

6.
0

1.
7

±
0.

3
19

l1
2

1.
5

±
0.

4
24

l1
2

1.
0

±
2.

1
20

3
l2

0
4.

4
±

0.
6

13
l2

0
0.

8
±

0.
1

13
l3

7
9.

4
±

2.
7

29
W

-2
0

23
27

7.
9

6.
6

1.
4

±
0.

3
23

l1
0

1.
3

±
0.

4
32

l1
0

0.
8

±
1.

1
14

7
l2

0
3.

7
±

0.
6

16
l2

0
1.

0
±

0.
2

17
l3

7
8.

1
±

1.
8

23
F-

20
79

29
6.

0
5.

2
2.

1
±

0.
3

13
l1

0
2.

1
±

0.
4

19
l1

0
1.

6
±

4.
9

31
1

l3
7

5.
1

±
0.

5
9

l3
7

1.
2

±
0.

1
10

l5
2

12
.0

±
5.

3
44

F-
30

13
2

29
7.

9
7.

7
2.

6
±

0.
4

14
2.

9
±

0.
6

21
2.

1
±

2.
0

94
l1

5
10

.7
±

0.
8

7
l1

5
2.

7
±

0.
3

12
l2

9
21

.0
±

5.
4

26
F-

35
11

5
40

8.
8

7.
5

1.
6

±
0.

3
19

l1
5

1.
9

±
0.

5
26

l1
5

1.
4

±
3.

1
22

3
l1

8
6.

3
±

0.
6

9
l1

8
1.

9
±

0.
3

16
l1

8
13

.0
±

3.
6

28
K

-3
51

36
7

34
15

.4
15

.4
2.

2
±

0.
1

5
2.

4
±

0.
1

5
0.

9
±

0.
2

8
15

.6
±

0.
4

2
3.

9
±

0.
1

5
25

.0
±

0.
6

2
W

-4
0

33
3

33
21

.4
17

.0
1.

9
±

0.
2

12
2.

4
±

0.
4

15
0.

7
±

0.
2

28
13

.3
±

1.
0

7
4.

0
±

0.
6

16
22

.3
±

1.
5

7
K

-4
21

39
8

34
20

.7
19

.9
1.

9
±

0.
1

7
2.

3
±

0.
2

8
0.

6
±

0.
1

13
16

.1
±

0.
6

4
4.

2
±

0.
3

8
25

.1
±

0.
8

3
F-

43
33

9
36

23
.3

17
.8

2.
4

±
0.

3
13

3.
1

±
0.

5
15

0.
9

±
0.

3
28

16
.7

±
1.

2
7

5.
4

±
0.

8
15

28
.5

±
1.

9
7

W
-6

0
41

4
32

32
.0

23
.8

1.
7

±
0.

1
8

2.
8

±
0.

3
9

0.
7

±
0.

1
19

16
.0

±
0.

6
4

5.
1

±
0.

5
10

26
.2

±
1.

1
4

W
-6

7
33

9
27

28
.2

19
.2

1.
6

±
0.

1
7

2.
7

±
0.

2
9

0.
9

±
0.

2
18

12
.3

±
0.

4
3

5.
0

±
0.

4
8

22
.4

±
0.

8
4

K
-6

81
61

1
32

26
.3

25
.3

2.
1

±
0.

2
9

3.
1

±
0.

3
10

0.
8

±
0.

1
16

23
.6

±
0.

7
3

6.
3

±
0.

5
8

35
.9

±
1.

1
3

F-
72

46
5

34
32

.8
24

.7
1.

9
±

0.
2

9
3.

3
±

0.
3

9
0.

9
±

0.
2

20
19

.2
±

0.
6

3
6.

3
±

0.
6

9
31

.5
±

1.
2

4
F-

11
2

60
5

28
32

.8
28

.0
1.

6
±

0.
2

11
3.

1
±

0.
3

10
0.

9
±

0.
2

20
21

.0
±

0.
7

3
6.

8
±

0.
5

7
33

.3
±

1.
2

4
W

-1
20

47
4

24
41

.7
27

.0
1.

5
±

0.
2

13
3.

6
±

0.
4

11
1.

1
±

0.
3

30
h

50
16

.7
±

0.
6

4
h

50
6.

8
±

0.
7

10
h

12
29

.7
±

1.
4

5
F-

14
2

52
6

26
36

.5
26

.7
1.

4
±

0.
2

14
3.

3
±

0.
4

11
1.

2
±

0.
3

25
h

1
17

.7
±

0.
8

4
h

1
7.

1
±

0.
6

8
h

1
30

.7
±

1.
4

5
F-

17
3

54
3

26
48

.7
31

.4
1.

4
±

0.
2

17
4.

1
±

0.
5

12
1.

3
±

0.
5

37
h

37
18

.8
±

1.
0

5
h

37
7.

6
±

0.
8

11
h

43
33

.1
±

2.
0

6

1
In

th
es

e
st

an
ds

,o
nl

y
st

em
nu

m
be

rs
pe

r4
cm

di
am

et
er

cl
as

s
w

er
e

re
co

rd
ed

,o
bs

cu
ri

ng
th

e
re

al
va

ri
ab

ili
ty

.C
on

fi
de

nc
e

in
te

rv
al

s,
th

er
ef

or
e,

ar
e

m
ar

ke
dl

y
sm

al
le

rt
ha

n
fo

rt
re

e-
w

is
e

in
ve

nt
or

ie
d

st
an

ds
.

2
E

rr
or

s
w

er
e

pr
op

ag
at

ed
to

th
e

w
ho

le
-s

ta
nd

bi
om

as
s

us
in

g
M

on
te

C
ar

lo
si

m
ul

at
io

n.
T

he
co

rr
el

at
io

n
st

ru
ct

ur
e

of
er

ro
rs

w
as

ob
ta

in
ed

fr
om

th
e

78
tr

ee
s

fo
rw

hi
ch

al
lb

io
m

as
s

co
m

pa
rt

m
en

ts
w

er
e

m
ea

-
su

re
d.

T
he

in
di

vi
du

al
co

rr
el

at
io

n
co

ef
fi

ci
en

ts
r

w
er

e
r N

×
B

=
0.

69
,r

N
×

D
=

0.
30

,r
N

×
S

=
0.

31
,

r N
×

R
=

0.
18

,r
B

×
D

=
0.

20
,r

B
×

S
=

0.
44

,r
B

×
R

=
0.

22
,r

D
×

S
=

0.
32

,r
D

×
R

=
0.

30
,a

nd
r S

×
R

=
–0

.1
3,

w
he

re
N

=
ne

ed
le

s,
B

=
br

an
ch

es
,D

=
dr

y
br

an
ch

es
,S

=
st

em
an

d
R

=
ro

ot
s.

 at V
yzkum

ny ustav lesniho hospodarstvi a m
yslivosti on M

ay 5, 2014
http://treephys.oxfordjournals.org/

D
ow

nloaded from
 

http://treephys.oxfordjournals.org/


biomass compartments is equal to the prediction of a model
taking the sum of all compartments as an independent variable
(Kozak 1970, Parresol 2001). However, this is possible only if
information on all biomass compartments is available for ev-
ery tree in the regression design matrix. Of the 688 trees in our
database, only 78 (from just four studies) were completely
sampled for biomass. We considered this subset too small to
serve as a basis for developing generic functions for a region as
large as Central Europe.

For biomass functions that use age and several dimensional
predictors, multicollinearity always exists among these highly
intercorrelated predictors. Multicollinearity has several ad-
verse effects. It tends to increase the standard errors of the re-
gression coefficients and it conceals the causal relationships;
however, it does not affect the precision of the mean response
(Neter et al. 1996). Because we are primarily interested in pre-
dicting the mean response, multicollinearity does not pose a
problem to our work.

In recent publications, weighted nonlinear regression was
used to develop biomass functions (Parresol 1999, Fonseca
and Parresol 2001, Parresol 2001). Based on this approach,
Parresol (2001) obtained a slightly smaller residual mean
square error (RMSE) compared with use of linear regression
of ln-transformed data. Although principally possible in com-
bination with mixed-effect models (Pinheiro and Bates 2000),
the complexity of most of our candidate models resulted in
major numerical problems if nonlinear mixed-effect model-
ling was tested. To correct for bias introduced by the ln-trans-
formation (Pinheiro and Bates 2000), we adapted the non-
parametric smearing estimate for linear mixed models. The
dependence of the additional correction factor cf 2 on the val-
ues of the predictors for a new response at first sight seems to
be a shortcoming (knowledge of the estimated random effects
is required to compute the value of cf 2). On the other hand, it
clarifies that variability caused by methodological differences
unevenly affects the resulting uncertainty of predictions for
different values of the predictors. However, variability of cf2

was generally small over the regression design matrix used for
the model fit, so that the use of the mean values given in Ta-
ble 4 should be a pragmatic compromise.

An important shortcoming in our study is the lack of bio-
mass data for young trees. There are no trees younger than
13 years in our model data set, and the smallest tree measured
for root biomass had a diameter of 5.1 cm (Table 2), which
limits the applicability of our functions to stands beyond the
regeneration phase. Even in 20- to 30-year-old stands, up to
40% of the trees may have a diameter or height that falls below
the range of validity of the model, i.e., they are smaller than the
smallest trees in the regression design matrices. This may in-
flate the 95% prediction intervals, as shown in Table 7, which
may lead to extreme values for compartment models with a
high residual error, as is the case for dry branches. The same is
true to a lesser extent for large trees. However, even if data
were available for trees less than 10 years old, this would re-
quire the development of a separate set of functions using base
diameter D0 as a predictor instead of D. This is because D is ei-
ther unavailable or is a poor predictor of biomass for small
trees.

Our set of predictors misses some important sources of vari-
ation in biomass allocation patterns. We assume that the ge-
netic variability of trees represents a large component of the
unexplained variance. Numerous studies have revealed differ-
ences in allocation patterns, crown geometry and wood density
among different tree provenances (Schmidt-Vogt 1987). A
second unknown source of variance is probably the health of
the trees sampled during the period of forest decline (Schulze
et al. 1989). Another source of variation specific for needle
biomass is starch content, which varies markedly over the
course of a year (Bauer et al. 1997). Dry mass of needles is
therefore also expected to vary with sampling date, being
higher during winter months. Further, our data set does not al-
low for discrimination among the effects of different silvi-
cultural practices.

The most comprehensive work on biomass functions for
Norway spruce was carried out by Marklund (1987, 1988) for
Swedish material. His landmark study was based on regres-
sion design matrices containing 281 to 544 trees depending on
the biomass compartment. His sampling design for stands and
trees was such that the trees were well distributed with respect
to the main predictor variables, e.g., diameter, age, site index
and geographic location. Figure 7 explores the performance of
Marklund’s functions for predicting biomass of Central Euro-
pean spruce trees. The solid lines represent the ratio of the
measured component dry mass of the Central European sam-
ple trees and the respective Marklund predictions for the same
trees (ratio 1 = measured/Marklund prediction). Although the
Marklund functions accurately predicted stem biomass over
the whole range of diameters (ratio close to 1), they overesti-
mated biomass of needles, dry branches and roots by about
25% and slightly underestimated branch biomass within the
central diameter range of 10 to 40 cm in which about 80% of
the sample trees fall. For small trees (D < 10 cm), the biomass
of the crown compartments tended to be largely underesti-
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Figure 6. Stand-level allocation patterns as a function of stand age as
predicted by the DHA model family for a set of 17 test sites. The test
sites range in stand age from 16 to 172 years (cf. Table 7). The wiggles
are due to slight differences in allocation patterns between the test
stands.
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mated by the Marklund functions, whereas the root biomass
was overestimated. The dashed lines compare in the same
manner the biomass predictions for the test data set using ei-
ther our DHA models or the Marklund functions (ratio 2 = our
DHA prediction/Marklund prediction). As expected, the devi-
ation of the model predictions follows closely the deviation of
the individual sample trees. The finding that Marklund’s func-
tions overestimate needle and root biomass, but predict stem
biomass correctly for Central European trees, may be ex-
plained by the influence of more favorable growing conditions
in Central Europe on allocation patterns. Palumets (1993) ana-
lyzed biomass partitioning in 99 spruce stands along a
north–south gradient from boreal Russia to Central Europe

and found a decrease in percentage biomass in needles and
roots from north to south. Because wood density of Norway
spruce is known to decrease with site quality (Trendelenburg
1955), the agreement with respect to predicted stem biomass
may indicate that differences in wood density are compensated
for by differences in stem form. Underestimation of branch
biomass by the Marklund functions may result from trees in
the boreal zone exhibiting less branchiness because of lower
evaporative demand (Berninger et al. 1995). Generally, the ap-
plication of our DHA models to the test data set of 17 stands
differing in age produced realistic age dynamics of allocation
patterns that are consistent within a few percent with the re-
sults of the meta-analysis study of Palumets (1993) and recent
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Figure 7. Comparison of our
data with Marklund’s func-
tions (Marklund 1988). The
solid line shows the ratio of
measured component dry mass
of the Central European sam-
ple trees contained in our de-
sign matrix and the dry mass
predicted for these trees using
the simplified Marklund func-
tions (ratio 1 = measured/
Marklund prediction). Num-
bers of sample trees falling in
10 cm diameter classes are
given in italics at the bottom of
each frame. For the test data
set (n = 1985 trees), the dashed
line shows the ratio of the dry
mass predicted by our DHA
models to the dry mass pre-
dicted by the same simplified
Marklund functions (ratio 2 =
our prediction/Marklund pre-
diction). The lines result from
smoothing of the data with a
tricube weighted loess-regres-
sion based on a 20 to 30% lo-
cal sampling proportion. We
used the following Marklund
functions: G-16 for needles,
G-13 minus G-16 for
branches, G-21 for dry
branches, G-2 for stem and
G-23 for roots.
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work by Mund et al. (2002).
We illustrated that, using the proposed functions and know-

ing only the diameter, height and age distribution of a stand,
the biomass of needles, branches and roots can be predicted
with relative 95% confidence intervals (RCI, i.e., half the in-
terval in percent of the mean prediction) ranging from 5 to
32% with a median of 11%. Stem biomass can be predicted
more precisely with a median RCI of 4%. Combining the un-
certainties of predictions for individual biomass compart-
ments at the stand level and considering the correlation struc-
ture of the errors, whole-tree biomass at the stand level may be
predicted with an RCI of about 30% in stands younger than 40
years and only 4% in stands older than 40 years. The functions
are capable of quantifying carbon stock changes over a rela-
tively short time span and are therefore well suited for carbon
accounting in the framework of the Kyoto Protocol. In future
carbon accounting schemes, generic biomass functions like
the ones we present here may be directly applied to dimen-
sional tree-level data recorded in national inventory systems.
This would improve the verification of carbon stock changes
in forests and render the development of complicated systems
of biomass expansion factors obsolete.

Because crown compartments exhibit higher nutrient con-
centrations and turnover rates than the stem compartment, the
availability of separate functions for each biomass compart-
ment is especially important for estimating nutrient budgets
and productivity. In other words, nutrient and productivity al-
location is different from biomass allocation. For example,
needles and branches contain about 50% of the nitrogen
(Scarascia-Mugnozza et al. 2000) and are responsible for 40%
of the productivity (Mund et al. 2002), but comprise only 15%
of the biomass. Because the models for needles and branches
are associated with a higher prediction error, the prediction er-
ror of nutrient stocks and productivity rates will accordingly
be higher.
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Appendix 1

Modified smearing estimate

When predicting new values of the response variable these are
considered as realizations of Model 2 (Equation 2):

ynew new new new new= + +x z bß ε

Although the best prediction on the ln-transformed scale is ob-
tained by simply replacing the unknown model coefficients ß
by their estimated values �ß, the back-transformation to the
original scale introduces a bias. The expected value of the
back-transformed response is given by:

E y E( (new new new new newexp( )) exp( ))= + +x z bß ε

new new new new= + +∫ exp( ) ,x z b bß ε εdF

where Fb , ε denotes the common distribution function of the
random effects b and the residuals ε. Because the random ef-
fects are assumed to be independent of the residuals, the com-
mon distribution can be factorized:

E y dF dF(exp( )) exp( )new new new new new= + +∫ x z b bß ε ε

where Fb and Fε now denote the distribution function of the
random effects and the residuals, respectively (Casella and
Berger 2002). These distribution functions can be estimated
by the empirical cumulative distribution functions of the esti-
mated random effects and the estimated residuals:
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where I(…) denotes the indicator function and �b j and �ε ij de-
note the estimated random effects and the residuals from the
fitted model, respectively (Duan 1983). Substituting the em-
pirical distribution functions for their unknown theoretical
counterparts converts the integral into a sum:

~
( )) exp( ) exp( � ) exp( �E y

J nj
j
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exp( new new new=
=

∑x z bß
1 1

1
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i

n

j

J j

)
==

∑∑
11

Finally, replacing the model parameters ß by their estimates �ß,

we arrive at a modified smearing estimate for the new re-
sponse:

� )) exp( �) �E y
J j

j

J

(exp(
1

exp( )new new new
1

corre

=
=

∑x z bß

ction factor 2 ( ) ccf

ij
i

n

j

J

n

j

2
� ��� ���

1

11

exp( � )ε
==

∑∑
orrection factor 1 ( )cf 1

� ��� ���

(A1)

which differs from the usual smearing estimate by the addi-
tional correction factor

cf
J jj

J
2 =

=∑1
1
exp( � )z bnew

reflecting the new error component. Note that there is no
unique correction factor as in the standard case of multiple lin-
ear regression. The correction factor cf2 now depends on the
vector znew. Replacing ß by �ßdoes not take into account the un-
certainty caused by the estimation of parameters, but this error
is small compared with the other sources of uncertainty.

Appendix 2

Calculation of confidence intervals for new predictions

In the following example, we show how to calculate a new pre-
diction for branch biomass and its confidence interval for a
single tree for which diameter (D = 18.8 cm), height (H =
16.9 m) and age (A = 40 years) are known. Consequently, we
choose the simple DHA model for branches presented in Ta-
ble 4, which requires only lnD (= 2.93), lnH (= 2.83) and
(lnH) 2(= 7.99) as predictors. Recalling Equation A1:

�(exp( )) exp( �)E ynew new

back-transformed
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= x ß

n

new

correction factor 2 ( )

� �� ��
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1

11n ij
i

n

j

J
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j

exp( � )ε
==

∑∑
correction factor ( 1)

� ��� ���

the mean prediction (in kg dry mass) on the original scale is
calculated using the regression coefficients and the correction
factors presented in Table 4 as:

� � �
=
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The estimated variance–covariance matrices for the fixed
(Var( ))� �ß and the random effects ( �Ψ) of the various models in
Table 4 can be downloaded as an Excel file or S-Plus objects
from ftp://panorama.bgc-jena.mpg.de/pub/science/cwirth/
Wirth_et_al._spruce_ v-cv-matrices.xls. A symmetric 95%
confidence interval around the prediction in logarithmic units
is calculated using the quantile of the standard normal distri-
bution as ± 1.96 Var new� ( � )y . This expression becomes 0.822
and the confidence interval in logarithmic units is xnew

�ß ±

0.824 = 2.610 ± 0.824 ⇒ lower boundary = 1.786, upper
boundary = 3.434. Back-transforming the boundary values to
the original scale, we obtain an asymmetric confidence inter-
val around the unbiased prediction of 14.93 of [6.0, 31.0]. The
alternative approach to calculate symmetric confidence inter-
vals is explained in the method section. Fonseca and Parresol
(2001) outline the construction of confidence intervals for si-
multaneous predictions.
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The variance of the new prediction is estimated according to Equation 3 as:

� � �
Var 2.93 2.83 7.99new
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